四时宝库

程序员的知识宝库

应用于单片机中的一个常见处理模块

放假了,今天给大家整理分享的是一篇有关按键处理的文章,gitte项目地址如下

https://gitee.com/xu6776443/key_board

key_board介绍

key_board适用于单片机中的小巧多功能按键支持,软件采用了分层的思想,并且真正做到了与平台无关,用户只需提供按键的基本信息和读写io电平的函数即可,移植非常方便,同时支持多个矩阵键盘及多个单io控制键盘。

目前已实现按下、弹起、长按自动、长按弹起、多击、连续等触发功能,并且能够随意组合(支持状态的同一时间轴和非同一时间轴),后续还会添加更多的实用功能。

使用步骤说明

  1. 初始化硬件相关资源。
  2. 提供一个1ms的定时器,用于定期性的调用'key_check'函数。
  3. 提供按键的简要描述及读写io的函数。
  4. 将键盘注册到系统。
  5. 具体的操作请参考提供的stm32例程。
  6. 因为程序默认使用了堆内存,当发现程序运行结果不正常时,可以尝试增大程序堆空间,或者注册调试接口查看详细原因。
  7. 更详细的使用教程见详细使用说明或者提供的stm32例程。

已支持的键盘

1、矩阵键盘示例图如下:

2、单io按键示例图如下:

详细使用说明

key_board.ckey_board.hkey_board_config.h三个头文件放进key_board文件夹中并包含进你的工程,并添加头文件路径。

基础功能移植(以stm32矩阵键盘为例)

首先需要一个可用的定时器(如果不使用定时器也可直接放到主循环中,但不推荐这样做,因为会导致时基不够准确),设置为1ms触发一次定时器;

准备待检测的按键的基本信息,具体可参考key_board_sample.c文件中的struct key_pin_t结构体,如下所示:

struct key_pin_t {
GPIO_TypeDef *port; //按键的端口号
uint16_t pin; //按键的引脚号
GPIO_PinState valid; //按键的有效电平(即按键按下时的电平)
GPIO_PinState invalid; //按键的无效电平(即按键空闲时的电平)
/*
可添加你的其它参数
*/
};

定义待检测的按键信息,具体可参考key_board_sample.c文件中的const struct key_pin_t key_pin_sig[]结构体数组,对应头文件为key_board_sample.h,如下所示:

//全局变量
const struct key_pin_t key_pin_sig[] = {
{
.port = KEY_PORT_J12,
.pin = KEY_PIN_J12,
.valid = KEY_PRESS_LEVEL_J12,
.invalid = KEY_RELEASE_LEVEL_J12
},
{
.port = KEY_PORT_J34,
.pin = KEY_PIN_J34,
.valid = KEY_PRESS_LEVEL_J34,
.invalid = KEY_RELEASE_LEVEL_J34
},
{
.port = KEY_PORT_J56,
.pin = KEY_PIN_J56,
.valid = KEY_PRESS_LEVEL_J56,
.invalid = KEY_RELEASE_LEVEL_J56
},
};

如果为矩阵键盘还需要定义控制io的相关信息,可参考key_board_sample.c文件中的const struct key_pin_t key_pin_ctrl[]结构体数组,对应头文件为key_board_sample.h,如下所示:

const struct key_pin_t key_pin_ctrl[] = {
{
.port = KEY_PORT_J135,
.pin = KEY_PIN_J135,
.valid = KEY_CTL_LINE_ENABLE,
.invalid = KEY_CTL_LINE_DISABLE
},
{
.port = KEY_PORT_J246,
.pin = KEY_PIN_J246,
.valid = KEY_CTL_LINE_ENABLE,
.invalid = KEY_CTL_LINE_DISABLE
},
};

实现按键io的电平读取函数,具体可参考key_board_sample.c文件中的pin_level_get函数,如下所示:

static inline bool pin_level_get(const void *desc)
{
struct key_pin_t *pdesc;
pdesc = (struct key_pin_t *)desc;
return HAL_GPIO_ReadPin(pdesc->port, pdesc->pin) == pdesc->valid;
}

如果为矩阵键盘还需要实现按键io的电平写入函数,具体可参考key_board_sample.c文件中的pin_level_set函数,如下所示:

static inline void pin_level_set(const void *desc, bool flag)
{
struct key_pin_t *pdesc;
pdesc = (struct key_pin_t *)desc;
HAL_GPIO_WritePin(pdesc->port, pdesc->pin, flag ? pdesc->valid : pdesc->invalid);
}

定义按键的id及功能结构体struct key_public_sig_t,具体可参考key_board_sample.c文件中的const struct key_public_sig_t key_public_sig[]结构体数组,对应头文件key_board.h,如:

const struct key_public_sig_t key_public_sig[] = {
KEY_PUBLIC_SIG_DEF(KEY_UP, &key_pin_sig[0], pin_level_get, KEY_FLAG_NONE),
KEY_PUBLIC_SIG_DEF(KEY_LEFT, &key_pin_sig[1], pin_level_get, KEY_FLAG_NONE),
KEY_PUBLIC_SIG_DEF(KEY_DOWN, &key_pin_sig[2], pin_level_get, KEY_FLAG_NONE),
//下面的是因为使用的矩阵键盘而扩展出来的三个按键
KEY_PUBLIC_SIG_DEF(KEY_ENTER, &key_pin_sig[0], pin_level_get, KEY_FLAG_NONE),
KEY_PUBLIC_SIG_DEF(KEY_RIGHT, &key_pin_sig[1], pin_level_get, KEY_FLAG_NONE),
KEY_PUBLIC_SIG_DEF(KEY_EXIT, &key_pin_sig[2], pin_level_get, KEY_FLAG_NONE),
};

如果为矩阵键盘还需要定义控制io的id及功能结构体struct key_public_ctrl_t,可参考key_board_sample.c文件中的const struct key_public_ctrl_t key_public_ctrl[]结构体数组,对应头文件key_board.h,如下所示:

const struct key_public_ctrl_t key_public_ctrl[] = {
KEY_PUBLIC_CTRL_DEF(&key_pin_ctrl[0], pin_level_set),
KEY_PUBLIC_CTRL_DEF(&key_pin_ctrl[1], pin_level_set),
};

初始化键盘,可参考key_board_sample.c文件中的GPIO_Key_Board_Init函数,如下所示:

void GPIO_Key_Board_Init(void)
{
//硬件io的初始化
GPIO_InitTypeDef GPIO_InitStruct;
unsigned int i;
RCC_KEY_BOARD_CLK_ENABLE();
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
for(i = 0;i < ARRAY_SIZE(key_pin_sig);i++)
{
GPIO_InitStruct.Pin = key_pin_sig[i].pin;
HAL_GPIO_Init(key_pin_sig[i].port, &GPIO_InitStruct);
}
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
for(i = 0;i < ARRAY_SIZE(key_pin_ctrl);i++)
{
GPIO_InitStruct.Pin = key_pin_ctrl[i].pin;
HAL_GPIO_Init(key_pin_ctrl[i].port, &GPIO_InitStruct);
}
//初始化键盘
key_board_init();
//注册键盘到系统中(矩阵键盘)
key_board_register(KEY_BOARD_MATRIX, key_public_sig, ARRAY_SIZE(key_public_sig), key_public_ctrl, ARRAY_SIZE(key_public_ctrl));
}

主流程伪代码框架,更多例子参考main_test.c文件,如下所示:

int main(void)
{
//初始化硬件io,并注册键盘
GPIO_Key_Board_Init();
//初始化定时器,用于按键扫描(1ms)
init_tmr();
for(;;)
{
if(key_check_state(KEY_UP, KEY_RELEASE))
{
PRINTF("KEY_UP KEY_RELEASE\r\n");
}
if(key_check_state(KEY_UP, KEY_PRESS))
{
PRINTF("KEY_UP KEY_PRESS\r\n");
}
}
}
//定时器到期回调处理函数
void tmr_irq_callback(void)
{
//调用按键扫描核心函数
key_check();
}

扩展功能长按的使用

首先需要确保key_board_config.h文件中宏KEY_LONG_SUPPORT已处于使能状态,并且正确设置了宏KEY_DEFAULT_LONG_TRRIGER_TIME的值;

设置按键功能需要对长按进行检测,如下所示:

KEY_PUBLIC_SIG_DEF(KEY_UP, &key_pin_sig[0], pin_level_get, KEY_FLAG_PRESS_LONG | KEY_FLAG_RELEASE_LONG)

使用例程,如下所示:

if(key_check_state(KEY_UP, KEY_PRESS_LONG))
{
PRINTF("KEY_UP KEY_PRESS_LONG\r\n");
}
if(key_check_state(KEY_UP, KEY_RELEASE_LONG))
{
PRINTF("KEY_UP KEY_RELEASE_LONG\r\n");
}

扩展功能连按的使用

首先需要确保key_board_config.h文件中宏KEY_CONTINUOUS_SUPPORT已处于使能状态,并且正确设置了宏KEY_DEFAULT_CONTINUOUS_INIT_TRRIGER_TIMEKEY_DEFAULT_CONTINUOUS_PERIOD_TRRIGER_TIME的值;

设置按键功能需要对连按进行检测,如下所示:

KEY_PUBLIC_SIG_DEF(KEY_UP, &key_pin_sig[0], pin_level_get, KEY_FLAG_PRESS_CONTINUOUS)

使用例程,如下所示:

if(key_check_state(KEY_UP, KEY_PRESS_CONTINUOUS))
{
PRINTF("KEY_UP KEY_PRESS_CONTINUOUS\r\n");
}

扩展功能多击的使用

首先需要确保key_board_config.h文件中宏KEY_MULTI_SUPPORT已处于使能状态,并且正确设置了宏KEY_DEFAULT_MULTI_INTERVAL_TIME的值;

设置按键功能需要多击进行检测,如:

KEY_PUBLIC_SIG_DEF(KEY_UP, &key_pin_sig[0], pin_level_get, KEY_FLAG_PRESS_MULTI | KEY_FLAG_RELEASE_MULTI)

使用例程,如下所示:

unsigned int res;
res = key_check_state(KEY_UP, KEY_PRESS_MULTI);
if(res)
{
PRINTF("KEY_UP KEY_PRESS_MULTI:%d\r\n", res);
}
res = key_check_state(KEY_UP, KEY_RELEASE_MULTI);
if(res)
{
PRINTF("KEY_UP KEY_RELEASE_MULTI:%d\r\n", res);
}

扩展功能组合状态(同一时间轴)

使用例程,如下所示:

unsigned int key_down_release_long, key_up_release_long;
key_down_release_long = key_check_state(KEY_DOWN, KEY_RELEASE_LONG);
key_up_release_long = key_check_state(KEY_UP, KEY_RELEASE_LONG);
if(key_down_release_long && key_up_release_long)
{
PRINTF("KEY_DOWN KEY_RELEASE_LONG && KEY_UP KEY_RELEASE_LONG\n");
}

扩展功能组合状态(非同一时间轴)

首先需要确保key_board_config.h文件中宏KEY_COMBINE_SUPPORT已处于使能状态,并且正确设置了宏KEY_DEFAULT_COMBINE_INTERVAL_TIME的值;

使用例程,如下所示:

//用于保存注册后的组合状态id
static unsigned int test_id1, test_id2;
//定义要检测的状态
const struct key_combine_t test_combine1[] = {
{ .id = KEY_UP, .state = KEY_PRESS },
{ .id = KEY_DOWN, .state = KEY_PRESS_LONG },
{ .id = KEY_UP, .state = KEY_PRESS },
};
//注册组合状态
test_id1 = key_combine_register(test_combine1, ARRAY_SIZE(test_combine1));
const struct key_combine_t test_combine2[] = {
{ .id = KEY_UP, .state = KEY_PRESS },
{ .id = KEY_DOWN, .state = KEY_PRESS },
{ .id = KEY_UP, .state = KEY_PRESS },
{ .id = KEY_DOWN, .state = KEY_PRESS },
};
test_id2 = key_combine_register(test_combine2, ARRAY_SIZE(test_combine2));
if(key_check_combine_state(test_id1))
{
PRINTF("combine test_id1\r\n");
}
if(key_check_combine_state(test_id2))
{
PRINTF("combine test_id2\r\n");
}

如有疑问,欢迎大家下方留言。

发表评论:

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言
    友情链接