一、实现介绍
根据官方wiki文档,sentinel控制台的实时监控数据,默认仅存储 5 分钟以内的数据。如需持久化,需要定制实现相关接口。
https://github.com/alibaba/Sentinel/wiki/在生产环境中使用-Sentinel-控制台 也给出了指导步骤:
1.自行扩展实现 MetricsRepository 接口;
2.注册成 Spring Bean 并在相应位置通过 @Qualifier 注解指定对应的 bean name 即可。
本文使用时序数据库InfluxDB来进行持久化,从下载开始,一步步编写一个基于InfluxDB的存储实现。
二、InfluxDB介绍及安装使用
InfluxDB官网:https://www.influxdata.com
关键词:
- 高性能时序数据库
- go语言编写没有外部依赖
- 支持HTTP API读写
- 支持类SQL查询语法
- 通过数据保留策略(Retention Policies)支持自动清理历史数据
- 通过连续查询(Continuous Queries)支持数据归档
最新版本:1.6.4
下载
windows:wget https://dl.influxdata.com/influxdb/releases/influxdb-1.6.4_windows_amd64.zip
linux:wget https://dl.influxdata.com/influxdb/releases/influxdb-1.6.4_linux_amd64.tar.gz
注:windows下载安装wget https://eternallybored.org/misc/wget/
在windows环境,解压zip文件至D:\influxdb\influxdb-1.6.4-1目录:
打开cmd命令行窗口,在D:\influxdb\influxdb-1.6.4-1执行命令启动influxdb服务端:influxd
再打开一个cmd窗口,在目录下输入influx启动客户端: // 后面可以带上参数:-precision rfc3339 指定时间格式显示
show databases发现只有系统的2个数据库,这里我们新建一个sentinel_db,输入命令:create database sentinel_db
use sentinel_db 使用sentinel_db数据库
show measurements 查看数据库中的数据表(measurement)
可以看到,这几个InfluxDB命令跟MySQL很相似。
InfluxDB名词概念:
database:数据库 // 关系数据库的database
measurement:数据库中的表 // 关系数据库中的table
point:表里的一行数据 // 关系数据库中的row
point由3部分组成:
time:每条数据记录的时间,也是数据库自动生成的主索引;// 类似主键
fields:各种记录的值;// 没有索引的字段
tags:各种有索引的属性 // 有索引的字段
三、修改Sentinel Dashboard
在官方github上,有一个java的客户端库:
https://github.com/influxdata/influxdb-java
在sentinel-dashboard的pom.xml中,加入maven依赖:
<dependency>
<groupId>org.influxdb</groupId>
<artifactId>influxdb-java</artifactId>
<version>2.17</version>
</dependency>
封装一个工具类:存储InfluxDB连接信息以及方便调用
/**
* @author cdfive
* @date 2018-10-19
*/
@Component
public class InfluxDBUtils {
private static Logger logger = LoggerFactory.getLogger(InfluxDBUtils.class);
private static String url;
private static String username;
private static String password;
private static InfluxDBResultMapper resultMapper = new InfluxDBResultMapper();
@Value("${influxdb.url}")
public void setUrl(String url) {
InfluxDBUtils.url = url;
}
@Value("${influxdb.username}")
public void setUsername(String username) {
InfluxDBUtils.username = username;
}
@Value("${influxdb.password}")
public void setPassword(String password) {
InfluxDBUtils.password = password;
}
public static void init(String url, String username, String password) {
InfluxDBUtils.url = url;
InfluxDBUtils.username = username;
InfluxDBUtils.password = password;
}
public static <T> T process(String database, InfluxDBCallback callback) {
InfluxDB influxDB = null;
T t = null;
try {
influxDB = InfluxDBFactory.connect(url, username, password);
influxDB.setDatabase(database);
t = callback.doCallBack(database, influxDB);
} catch (Exception e) {
logger.error("[process exception]", e);
} finally {
if (influxDB != null) {
try {
influxDB.close();
} catch (Exception e) {
logger.error("[influxDB.close exception]", e);
}
}
}
return t;
}
public static void insert(String database, InfluxDBInsertCallback influxDBInsertCallback) {
process(database, new InfluxDBCallback() {
@Override
public <T> T doCallBack(String database, InfluxDB influxDB) {
influxDBInsertCallback.doCallBack(database, influxDB);
return null;
}
});
}
public static QueryResult query(String database, InfluxDBQueryCallback influxDBQueryCallback) {
return process(database, new InfluxDBCallback() {
@Override
public <T> T doCallBack(String database, InfluxDB influxDB) {
QueryResult queryResult = influxDBQueryCallback.doCallBack(database, influxDB);
return (T) queryResult;
}
});
}
public static <T> List<T> queryList(String database, String sql, Map<String, Object> paramMap, Class<T> clasz) {
QueryResult queryResult = query(database, new InfluxDBQueryCallback() {
@Override
public QueryResult doCallBack(String database, InfluxDB influxDB) {
BoundParameterQuery.QueryBuilder queryBuilder = BoundParameterQuery.QueryBuilder.newQuery(sql);
queryBuilder.forDatabase(database);
if (paramMap != null && paramMap.size() > 0) {
Set<Map.Entry<String, Object>> entries = paramMap.entrySet();
for (Map.Entry<String, Object> entry : entries) {
queryBuilder.bind(entry.getKey(), entry.getValue());
}
}
return influxDB.query(queryBuilder.create());
}
});
return resultMapper.toPOJO(queryResult, clasz);
}
public interface InfluxDBCallback {
<T> T doCallBack(String database, InfluxDB influxDB);
}
public interface InfluxDBInsertCallback {
void doCallBack(String database, InfluxDB influxDB);
}
public interface InfluxDBQueryCallback {
QueryResult doCallBack(String database, InfluxDB influxDB);
}
}
其中:
url、username、password用于存储InfluxDB的连接、用户名、密码信息,定义为static属性,因此在set方法上使用@Value注解从配置文件读取属性值;
resultMapper用于查询结果到实体类的映射;
init方法用于初始化url、username、password;
process为通用的处理方法,负责打开关闭连接,并且调用InfluxDBCallback回调方法;
insert为插入数据方法,配合InfluxDBInsertCallback回调使用;
query为通用的查询方法,配合InfluxDBQueryCallback回调方法使用,返回QueryResult对象;
queryList为查询列表方法,调用query得到QueryResult,再通过resultMapper转换为List<实体类>;
在resources目录下的application.properties文件中,增加InfluxDB的配置:
influxdb.url=${influxdb.url}
influxdb.username=${influxdb.username}
influxdb.password=${influxdb.password}
用${xxx}占位符,这样可以通过maven的pom.xml添加profile配置不同环境(开发、测试、生产) 或 从配置中心读取参数。
在datasource.entity包下,新建influxdb包,下面新建sentinel_metric数据表(measurement)对应的实体类MetricPO:
package com.alibaba.csp.sentinel.dashboard.datasource.entity;
import org.influxdb.annotation.Column;
import org.influxdb.annotation.Measurement;
import java.time.Instant;
/**
* @author cdfive
* @date 2018-10-19
*/
@Measurement(name = "sentinel_metric")
public class MetricPO {
@Column(name = "time")
private Instant time;
@Column(name = "id")
private Long id;
@Column(name = "gmtCreate")
private Long gmtCreate;
@Column(name = "gmtModified")
private Long gmtModified;
@Column(name = "app", tag = true)
private String app;
@Column(name = "resource", tag = true)
private String resource;
@Column(name = "passQps")
private Long passQps;
@Column(name = "successQps")
private Long successQps;
@Column(name = "blockQps")
private Long blockQps;
@Column(name = "exceptionQps")
private Long exceptionQps;
@Column(name = "rt")
private double rt;
@Column(name = "count")
private int count;
@Column(name = "resourceCode")
private int resourceCode;
// getter setter省略
}
该类参考MetricEntity创建,加上influxdb-java包提供的注解,通过@Measurement(name = "sentinel_metric")指定数据表(measurement)名称,
time作为时序数据库的时间列;
app、resource设置为tag列,通过注解标识为tag=true;
其它字段为filed列;
接着在InMemoryMetricsRepository所在的repository.metric包下新建InfluxDBMetricsRepository类,实现MetricsRepository<MetricEntity>接口:
package com.alibaba.csp.sentinel.dashboard.repository.metric;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import org.apache.commons.lang.time.DateFormatUtils;
import org.apache.commons.lang.time.DateUtils;
import org.influxdb.InfluxDB;
import org.influxdb.dto.Point;
import org.springframework.stereotype.Repository;
import org.springframework.util.CollectionUtils;
import com.alibaba.csp.sentinel.dashboard.datasource.entity.MetricEntity;
import com.alibaba.csp.sentinel.dashboard.datasource.entity.MetricPO;
import com.alibaba.csp.sentinel.dashboard.util.InfluxDBUtils;
import com.alibaba.csp.sentinel.util.StringUtil;
/**
* metrics数据InfluxDB存储实现
* @author cdfive
* @date 2018-10-19
*/
@Repository("influxDBMetricsRepository")
public class InfluxDBMetricsRepository implements MetricsRepository<MetricEntity> {
/**时间格式*/
private static final String DATE_FORMAT_PATTERN = "yyyy-MM-dd HH:mm:ss.SSS";
/**数据库名称*/
private static final String SENTINEL_DATABASE = "sentinel_db";
/**数据表名称*/
private static final String METRIC_MEASUREMENT = "sentinel_metric";
/**北京时间领先UTC时间8小时 UTC: Universal Time Coordinated,世界统一时间*/
private static final Integer UTC_8 = 8;
@Override
public void save(MetricEntity metric) {
if (metric == null || StringUtil.isBlank(metric.getApp())) {
return;
}
InfluxDBUtils.insert(SENTINEL_DATABASE, new InfluxDBUtils.InfluxDBInsertCallback() {
@Override
public void doCallBack(String database, InfluxDB influxDB) {
if (metric.getId() == null) {
metric.setId(System.currentTimeMillis());
}
doSave(influxDB, metric);
}
});
}
@Override
public void saveAll(Iterable<MetricEntity> metrics) {
if (metrics == null) {
return;
}
Iterator<MetricEntity> iterator = metrics.iterator();
boolean next = iterator.hasNext();
if (!next) {
return;
}
InfluxDBUtils.insert(SENTINEL_DATABASE, new InfluxDBUtils.InfluxDBInsertCallback() {
@Override
public void doCallBack(String database, InfluxDB influxDB) {
while (iterator.hasNext()) {
MetricEntity metric = iterator.next();
if (metric.getId() == null) {
metric.setId(System.currentTimeMillis());
}
doSave(influxDB, metric);
}
}
});
}
@Override
public List<MetricEntity> queryByAppAndResourceBetween(String app, String resource, long startTime, long endTime) {
List<MetricEntity> results = new ArrayList<MetricEntity>();
if (StringUtil.isBlank(app)) {
return results;
}
if (StringUtil.isBlank(resource)) {
return results;
}
// 将查询的开始时间和结束减去8小时,因为influxdb使用的是UTC时间,北京时间比UTC时间慢8个小时
endTime = endTime - UTC_8 * 60 * 60 *1000;
startTime = startTime - UTC_8 * 60 * 60 *1000;
StringBuilder sql = new StringBuilder();
sql.append("SELECT * FROM " + METRIC_MEASUREMENT);
sql.append(" WHERE app=$app");
sql.append(" AND resource=$resource");
sql.append(" AND time>=$startTime");
sql.append(" AND time<=$endTime");
Map<String, Object> paramMap = new HashMap<String, Object>();
paramMap.put("app", app);
paramMap.put("resource", resource);
paramMap.put("startTime", DateFormatUtils.format(new Date(startTime), DATE_FORMAT_PATTERN));
paramMap.put("endTime", DateFormatUtils.format(new Date(endTime), DATE_FORMAT_PATTERN));
List<MetricPO> metricPOS = InfluxDBUtils.queryList(SENTINEL_DATABASE, sql.toString(), paramMap, MetricPO.class);
if (CollectionUtils.isEmpty(metricPOS)) {
return results;
}
for (MetricPO metricPO : metricPOS) {
results.add(convertToMetricEntity(metricPO));
}
return results;
}
@Override
public List<String> listResourcesOfApp(String app) {
List<String> results = new ArrayList<>();
if (StringUtil.isBlank(app)) {
return results;
}
StringBuilder sql = new StringBuilder();
sql.append("SELECT * FROM " + METRIC_MEASUREMENT);
sql.append(" WHERE app=$app");
sql.append(" AND time>=$startTime");
Map<String, Object> paramMap = new HashMap<String, Object>();
long startTime = System.currentTimeMillis() - 1000 * 60;
// 将查询的开始时间减去8小时,因为influxdb使用的是UTC时间,北京时间比UTC时间慢8个小时
startTime = startTime - UTC_8 * 60 * 60 *1000;
paramMap.put("app", app);
paramMap.put("startTime", DateFormatUtils.format(new Date(startTime), DATE_FORMAT_PATTERN));
List<MetricPO> metricPOS = InfluxDBUtils.queryList(SENTINEL_DATABASE, sql.toString(), paramMap, MetricPO.class);
if (CollectionUtils.isEmpty(metricPOS)) {
return results;
}
List<MetricEntity> metricEntities = new ArrayList<MetricEntity>();
for (MetricPO metricPO : metricPOS) {
metricEntities.add(convertToMetricEntity(metricPO));
}
Map<String, MetricEntity> resourceCount = new HashMap<>(32);
for (MetricEntity metricEntity : metricEntities) {
String resource = metricEntity.getResource();
if (resourceCount.containsKey(resource)) {
MetricEntity oldEntity = resourceCount.get(resource);
oldEntity.addPassQps(metricEntity.getPassQps());
oldEntity.addRtAndSuccessQps(metricEntity.getRt(), metricEntity.getSuccessQps());
oldEntity.addBlockQps(metricEntity.getBlockQps());
oldEntity.addExceptionQps(metricEntity.getExceptionQps());
oldEntity.addCount(1);
} else {
resourceCount.put(resource, MetricEntity.copyOf(metricEntity));
}
}
// Order by last minute b_qps DESC.
return resourceCount.entrySet()
.stream()
.sorted((o1, o2) -> {
MetricEntity e1 = o1.getValue();
MetricEntity e2 = o2.getValue();
int t = e2.getBlockQps().compareTo(e1.getBlockQps());
if (t != 0) {
return t;
}
return e2.getPassQps().compareTo(e1.getPassQps());
})
.map(Map.Entry::getKey)
.collect(Collectors.toList());
}
private MetricEntity convertToMetricEntity(MetricPO metricPO) {
MetricEntity metricEntity = new MetricEntity();
metricEntity.setId(metricPO.getId());
metricEntity.setGmtCreate(new Date(metricPO.getGmtCreate()));
metricEntity.setGmtModified(new Date(metricPO.getGmtModified()));
metricEntity.setApp(metricPO.getApp());
metricEntity.setTimestamp(Date.from(metricPO.getTime()));
metricEntity.setResource(metricPO.getResource());
metricEntity.setPassQps(metricPO.getPassQps());
metricEntity.setSuccessQps(metricPO.getSuccessQps());
metricEntity.setBlockQps(metricPO.getBlockQps());
metricEntity.setExceptionQps(metricPO.getExceptionQps());
metricEntity.setRt(metricPO.getRt());
metricEntity.setCount(metricPO.getCount());
return metricEntity;
}
private void doSave(InfluxDB influxDB, MetricEntity metric) {
influxDB.write(Point.measurement(METRIC_MEASUREMENT)
.time(metric.getTimestamp().getTime(), TimeUnit.MILLISECONDS)
.tag("app", metric.getApp())
.tag("resource", metric.getResource())
.addField("id", metric.getId())
.addField("gmtCreate", metric.getGmtCreate().getTime())
.addField("gmtModified", metric.getGmtModified().getTime())
.addField("passQps", metric.getPassQps())
.addField("successQps", metric.getSuccessQps())
.addField("blockQps", metric.getBlockQps())
.addField("exceptionQps", metric.getExceptionQps())
.addField("rt", metric.getRt())
.addField("count", metric.getCount())
.addField("resourceCode", metric.getResourceCode())
.build());
}
}
其中:
save、saveAll方法通过调用InfluxDBUtils.insert和InfluxDBInsertCallback回调方法,往sentinel_db库的sentinel_metric数据表写数据;
saveAll方法不是循环调用save方法,而是在回调内部循环Iterable<MetricEntity> metrics处理,这样InfluxDBFactory.connect连接只打开关闭一次;
doSave方法中,.time(DateUtils.addHours(metric.getTimestamp(), 8).getTime(), TimeUnit.MILLISECONDS)
因InfluxDB的UTC时间暂时没找到修改方法,所以这里time时间列加了8个小时时差;
queryByAppAndResourceBetween、listResourcesOfApp里面的查询方法,使用InfluxDB提供的类sql语法,编写查询语句即可。
最后一步,在MetricController、MetricFetcher两个类,找到metricStore属性,在@Autowired注解上面加上@Qualifier("jpaMetricsRepository")注解:
@Qualifier("influxDBMetricsRepository")
@Autowired
private MetricsRepository<MetricEntity> metricStore;
四、验证成果
设置sentinel-dashboard工程启动参数:-Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=sentinel-dashboard
启动工程,打开http://localhost:8080,查看各页面均显示正常,
在命令行通过InfluxDB客户端命令,show measurements,可以看到已经生成了sentinel_metric数据表(measurement);
查询总数:select count(id) from sentinel_metric
查询最新5行数据:select * from sentinel_metric order by time desc limit 5
注:命令行语句结束不用加分号
代码参考:https://github.com/cdfive/Sentinel/tree/winxuan_develop/sentinel-dashboard
扩展:
1.考虑以什么时间维度归档历史数据;
2.结合grafana将监控数据进行多维度的统计和呈现。
五、参考
Sentinel官方文档:
https://github.com/alibaba/Sentinel/wiki/控制台
https://github.com/alibaba/Sentinel/wiki/在生产环境中使用-Sentinel-控制台
InfluxDB官网文档 https://docs.influxdata.com/influxdb/v1.6/introduction/getting-started/
InfluxDB简明手册 https://xtutu.gitbooks.io/influxdb-handbook/content/
原文链接:https://www.cnblogs.com/cdfive2018/p/9914838.html
注:在原文的链接基础之上修正了Sentinal控制台可以显示监控数据,但是通过Grafana因为时区的问题不能够正常展示的问题。