四时宝库

程序员的知识宝库

Linux内核最新的连续内存分配器(CMA)——避免预留大块内存

在我们使用ARM等嵌入式Linux系统的时候,一个头疼的问题是GPU,Camera,HDMI等都需要预留大量连续内存,这部分内存平时不用,但是一般的做法又必须先预留着。目前,Marek Szyprowski和Michal Nazarewicz实现了一套全新的Contiguous Memory Allocator。通过这套机制,我们可以做到不预留内存,这些内存平时是可用的,只有当需要的时候才被分配给Camera,HDMI等设备。下面分析它的基本代码流程。

1. 声明连续内存

内核启动过程中arch/arm/mm/init.c中的arm_memblock_init()会调用dma_contiguous_reserve(min(arm_dma_limit, arm_lowmem_limit));

该函数位于:drivers/base/dma-contiguous.c

/**
 * dma_contiguous_reserve() - reserve area for contiguous memory handling
 * @limit: End address of the reserved memory (optional, 0 for any).
 *
 * This function reserves memory from early allocator. It should be
 * called by arch specific code once the early allocator (memblock or bootmem)
 * has been activated and all other subsystems have already allocated/reserved
 * memory.
 */
void __init dma_contiguous_reserve(phys_addr_t limit)
{
 unsigned long selected_size = 0;
 
 pr_debug("%s(limit %08lx)\n", __func__, (unsigned long)limit);
 
 if (size_cmdline != -1) {
 selected_size = size_cmdline;
 } else {
#ifdef CONFIG_CMA_SIZE_SEL_MBYTES
 selected_size = size_bytes;
#elif defined(CONFIG_CMA_SIZE_SEL_PERCENTAGE)
 selected_size = cma_early_percent_memory();
#elif defined(CONFIG_CMA_SIZE_SEL_MIN)
 selected_size = min(size_bytes, cma_early_percent_memory());
#elif defined(CONFIG_CMA_SIZE_SEL_MAX)
 selected_size = max(size_bytes, cma_early_percent_memory());
#endif
 } 
 
 if (selected_size) {
 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
 selected_size / SZ_1M);
 
 dma_declare_contiguous(NULL, selected_size, 0, limit);
 } 

其中的size_bytes定义为:

static const unsigned long size_bytes = CMA_SIZE_MBYTES * SZ_1M

默认情况下,CMA_SIZE_MBYTES会被定义为16MB,来源于CONFIG_CMA_SIZE_MBYTES=16

int __init dma_declare_contiguous(struct device *dev, unsigned long size,
 phys_addr_t base, phys_addr_t limit)
{
 ...
 /* Reserve memory */
 if (base) {
 if (memblock_is_region_reserved(base, size) ||
 memblock_reserve(base, size) < 0) {
 base = -EBUSY;
 goto err;
 }
 } else {
 /*
 * Use __memblock_alloc_base() since
 * memblock_alloc_base() panic()s.
 */
 phys_addr_t addr = __memblock_alloc_base(size, alignment, limit);
 if (!addr) {
 base = -ENOMEM;
 goto err;
 } else if (addr + size > ~(unsigned long)0) {
 memblock_free(addr, size);
 base = -EINVAL;
 base = -EINVAL;
 goto err;
 } else {
 base = addr;
 }
 }
 
 /*
 * Each reserved area must be initialised later, when more kernel
 * subsystems (like slab allocator) are available.
 */
 r->start = base;
 r->size = size;
 r->dev = dev;
 cma_reserved_count++;
 pr_info("CMA: reserved %ld MiB at %08lx\n", size / SZ_1M,
 (unsigned long)base);
 
 /* Architecture specific contiguous memory fixup. */
 dma_contiguous_early_fixup(base, size);
 return 0;
err:
 pr_err("CMA: failed to reserve %ld MiB\n", size / SZ_1M);
 return base;
} 

由此可见,连续内存区域也是在内核启动的早期,通过__memblock_alloc_base()拿到的。

另外:

drivers/base/dma-contiguous.c里面的core_initcall()会导致cma_init_reserved_areas()被调用:

cma_create_area()会调用cma_activate_area(),cma_activate_area()函数则会针对每个page调用:

init_cma_reserved_pageblock(pfn_to_page(base_pfn));

这个函数则会通过set_pageblock_migratetype(page, MIGRATE_CMA)将页设置为MIGRATE_CMA类型的:

#ifdef CONFIG_CMA
/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
void __init init_cma_reserved_pageblock(struct page *page)
{ 
 unsigned i = pageblock_nr_pages;
 struct page *p = page;
 
 do {
 __ClearPageReserved(p);
 set_page_count(p, 0);
 } while (++p, --i);
 
 set_page_refcounted(page);
 set_pageblock_migratetype(page, MIGRATE_CMA);
 __free_pages(page, pageblock_order);
 totalram_pages += pageblock_nr_pages;
} 
#endif

同时其中调用的__free_pages(page, pageblock_order);最终会调用到__free_one_page(page, zone, order, migratetype);

相关的page会被加到MIGRATE_CMA的free_list上面去:

list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);

2. 申请连续内存

申请连续内存仍然使用标准的arch/arm/mm/dma-mapping.c中定义的dma_alloc_coherent()和dma_alloc_writecombine(),这二者会间接调用drivers/base/dma-contiguous.c中的

struct page *dma_alloc_from_contiguous(struct device *dev, int count,
 unsigned int align)

->

struct page *dma_alloc_from_contiguous(struct device *dev, int count,
 unsigned int align)
{
 ...
 
 for (;;) {
 pageno = bitmap_find_next_zero_area(cma->bitmap, cma->count,
 start, count, mask);
 if (pageno >= cma->count) {
 ret = -ENOMEM;
 goto error;
 }
 
 pfn = cma->base_pfn + pageno;
 ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA);
 if (ret == 0) {
 bitmap_set(cma->bitmap, pageno, count);
 break;
 } else if (ret != -EBUSY) {
 goto error;
 }
 pr_debug("%s(): memory range at %p is busy, retrying\n",
 __func__, pfn_to_page(pfn));
 /* try again with a bit different memory target */
 start = pageno + mask + 1;
 }
 ...
 
}

--》

int alloc_contig_range(unsigned long start, unsigned long end,
 unsigned migratetype)

需要隔离page,隔离page的作用通过代码的注释可以体现:

 /*
 * What we do here is we mark all pageblocks in range as
 * MIGRATE_ISOLATE. Because of the way page allocator work, we
 * align the range to MAX_ORDER pages so that page allocator
 * won't try to merge buddies from different pageblocks and
 * change MIGRATE_ISOLATE to some other migration type.
 *
 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
 * migrate the pages from an unaligned range (ie. pages that
 * we are interested in). This will put all the pages in
 * range back to page allocator as MIGRATE_ISOLATE.
 *
 * When this is done, we take the pages in range from page
 * allocator removing them from the buddy system. This way
 * page allocator will never consider using them.
 *
 * This lets us mark the pageblocks back as
 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
 * MAX_ORDER aligned range but not in the unaligned, original
 * range are put back to page allocator so that buddy can use
 * them. 
 */ 
 
 ret = start_isolate_page_range(pfn_align_to_maxpage_down(start),
 pfn_align_to_maxpage_up(end),
 migratetype);

简单地说,就是把相关的page标记为MIGRATE_ISOLATE,这样buddy系统就不会再使用他们。

/* 
 * start_isolate_page_range() -- make page-allocation-type of range of pages
 * to be MIGRATE_ISOLATE.
 * @start_pfn: The lower PFN of the range to be isolated.
 * @end_pfn: The upper PFN of the range to be isolated.
 * @migratetype: migrate type to set in error recovery.
 *
 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
 * the range will never be allocated. Any free pages and pages freed in the
 * future will not be allocated again.
 *
 * start_pfn/end_pfn must be aligned to pageblock_order.
 * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
 */
int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
 unsigned migratetype)
{
 unsigned long pfn;
 unsigned long undo_pfn;
 struct page *page;
 
 BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
 BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
 
 for (pfn = start_pfn;
 pfn < end_pfn;
 pfn += pageblock_nr_pages) {
 page = __first_valid_page(pfn, pageblock_nr_pages);
 if (page && set_migratetype_isolate(page)) {
 undo_pfn = pfn;
 goto undo;
 }
 }
 return 0;
undo:
 for (pfn = start_pfn;
 pfn < undo_pfn;
 pfn += pageblock_nr_pages)
 unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
 
 return -EBUSY;
}

接下来调用__alloc_contig_migrate_range()进行页面隔离和迁移:

static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) 
{
 /* This function is based on compact_zone() from compaction.c. */
 
 unsigned long pfn = start;
 unsigned int tries = 0; 
 int ret = 0; 
 
 struct compact_control cc = {
 .nr_migratepages = 0, 
 .order = -1,
 .zone = page_zone(pfn_to_page(start)),
 .sync = true,
 }; 
 INIT_LIST_HEAD(&cc.migratepages);
 
 migrate_prep_local();
 
 while (pfn < end || !list_empty(&cc.migratepages)) {
 if (fatal_signal_pending(current)) {
 ret = -EINTR;
 break;
 } 
 
 if (list_empty(&cc.migratepages)) {
 cc.nr_migratepages = 0; 
 pfn = isolate_migratepages_range(cc.zone, &cc, 
 pfn, end);
 if (!pfn) {
 ret = -EINTR;
 break;
 } 
 tries = 0; 
 } else if (++tries == 5) { 
 ret = ret < 0 ? ret : -EBUSY;
 break;
 } 
 
 ret = migrate_pages(&cc.migratepages,
 __alloc_contig_migrate_alloc,
 0, false, true);
 } 
 
 putback_lru_pages(&cc.migratepages);
 return ret > 0 ? 0 : ret; 
}

其中的函数migrate_pages()会完成页面的迁移,迁移过程中通过传入的__alloc_contig_migrate_alloc()申请新的page,并将老的page付给新的page:

int migrate_pages(struct list_head *from,
 new_page_t get_new_page, unsigned long private, bool offlining,
 bool sync)
{
 int retry = 1; 
 int nr_failed = 0; 
 int pass = 0; 
 struct page *page;
 struct page *page2;
 int swapwrite = current->flags & PF_SWAPWRITE;
 int rc;
 
 if (!swapwrite)
 current->flags |= PF_SWAPWRITE;
 
 for(pass = 0; pass < 10 && retry; pass++) {
 retry = 0; 
 
 list_for_each_entry_safe(page, page2, from, lru) {
 cond_resched();
 
 rc = unmap_and_move(get_new_page, private,
 page, pass > 2, offlining,
 sync);
 
 switch(rc) {
 case -ENOMEM:
 goto out; 
 case -EAGAIN:
 retry++;
 break;
 case 0:
 break;
 default:
 /* Permanent failure */
 nr_failed++;
 break;
 } 
 } 
 } 
 rc = 0;
...
} 

其中的unmap_and_move()函数较为关键,它定义在mm/migrate.c中

/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 struct page *page, int force, bool offlining, bool sync)
{
 int rc = 0;
 int *result = NULL;
 struct page *newpage = get_new_page(page, private, &result);
 int remap_swapcache = 1;
 int charge = 0;
 struct mem_cgroup *mem = NULL;
 struct anon_vma *anon_vma = NULL;
 
 ...
 
 /* charge against new page */
 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
 ...
 
 if (PageWriteback(page)) {
 if (!force || !sync)
 goto uncharge;
 wait_on_page_writeback(page);
 }
 /*
 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 * we cannot notice that anon_vma is freed while we migrates a page.
 * This get_anon_vma() delays freeing anon_vma pointer until the end
 * of migration. File cache pages are no problem because of page_lock()
 * File Caches may use write_page() or lock_page() in migration, then,
 * just care Anon page here.
 */
 if (PageAnon(page)) {
 /*
 * Only page_lock_anon_vma() understands the subtleties of
 * getting a hold on an anon_vma from outside one of its mms.
 */
 anon_vma = page_lock_anon_vma(page);
 if (anon_vma) {
 /*
 * Take a reference count on the anon_vma if the
 * page is mapped so that it is guaranteed to
 * exist when the page is remapped later
 */
 get_anon_vma(anon_vma);
 page_unlock_anon_vma(anon_vma);
 } else if (PageSwapCache(page)) {
 /*
 * We cannot be sure that the anon_vma of an unmapped
 * swapcache page is safe to use because we don't
 * know in advance if the VMA that this page belonged
 * to still exists. If the VMA and others sharing the
 * data have been freed, then the anon_vma could
 * already be invalid.
 *
 * To avoid this possibility, swapcache pages get
 * migrated but are not remapped when migration
 * completes
 */
 remap_swapcache = 0;
 } else {
 goto uncharge;
 }
 }
 
 ...
 /* Establish migration ptes or remove ptes */
 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
skip_unmap:
 if (!page_mapped(page))
 rc = move_to_new_page(newpage, page, remap_swapcache);
 
 if (rc && remap_swapcache)
 remove_migration_ptes(page, page);
 
 /* Drop an anon_vma reference if we took one */
 if (anon_vma)
 drop_anon_vma(anon_vma);
 
uncharge:
 if (!charge)
 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
unlock:
 unlock_page(page);
 
move_newpage:
 ...
}

通过unmap_and_move(),老的page就被迁移过去新的page。

接下来要回收page,回收page的作用是,不至于因为拿了连续的内存后,系统变得内存饥饿:

->

/*
 * Reclaim enough pages to make sure that contiguous allocation
 * will not starve the system.
 */
 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);

->

/*
 * Trigger memory pressure bump to reclaim some pages in order to be able to
 * allocate 'count' pages in single page units. Does similar work as
 *__alloc_pages_slowpath() function.
 */
static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
{
 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
 int did_some_progress = 0;
 int order = 1;
 unsigned long watermark;
 
 /*
 * Increase level of watermarks to force kswapd do his job
 * to stabilise at new watermark level.
 */
 __update_cma_watermarks(zone, count);
 
 /* Obey watermarks as if the page was being allocated */
 watermark = low_wmark_pages(zone) + count;
 while (!zone_watermark_ok(zone, 0, watermark, 0, 0)) {
 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
 
 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
 NULL);
 if (!did_some_progress) {
 /* Exhausted what can be done so it's blamo time */
 out_of_memory(zonelist, gfp_mask, order, NULL);
 }
 }
 
 /* Restore original watermark levels. */
 __update_cma_watermarks(zone, -count);
 
 return count;
}

3. 释放连续内存

内存释放的时候也比较简单,直接就是:

arch/arm/mm/dma-mapping.c:

void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)

->

arch/arm/mm/dma-mapping.c:

static void __free_from_contiguous(struct device *dev, struct page *page,
 size_t size)
{
 __dma_remap(page, size, pgprot_kernel);
 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

->

bool dma_release_from_contiguous(struct device *dev, struct page *pages,
 int count)
{
 ...
 free_contig_range(pfn, count);
 ..
 
}

->

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{ 
 for (; nr_pages--; ++pfn)
 __free_page(pfn_to_page(pfn));
} 

将page交还给buddy。

4. 内核内存分配的migratetype

内核内存分配的时候,带的标志是GFP_,但是GFP_可以转化为migratetype:

static inline int allocflags_to_migratetype(gfp_t gfp_flags)
{
 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
 
 if (unlikely(page_group_by_mobility_disabled))
 return MIGRATE_UNMOVABLE;
 
 /* Group based on mobility */
 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
 ((gfp_flags & __GFP_RECLAIMABLE) != 0); 
}

之后申请内存的时候,会对比迁移类型匹配的free_list:

 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
 preferred_zone, migratetype);

另外,笔者也编写了一个测试程序,透过它随时测试CMA的功能:

/*
 * kernel module helper for testing CMA
 *
 * Licensed under GPLv2 or later.
 */
 
#include <linux/module.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/dma-mapping.h>
 
#define CMA_NUM 10
static struct device *cma_dev;
static dma_addr_t dma_phys[CMA_NUM];
static void *dma_virt[CMA_NUM];
 
/* any read request will free coherent memory, eg.
 * cat /dev/cma_test
 */
static ssize_t
cma_test_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	int i;
 
	for (i = 0; i < CMA_NUM; i++) {
		if (dma_virt[i]) {
			dma_free_coherent(cma_dev, (i + 1) * SZ_1M, dma_virt[i], dma_phys[i]);
			_dev_info(cma_dev, "free virt: %p phys: %p\n", dma_virt[i], (void *)dma_phys[i]);
			dma_virt[i] = NULL;
			break;
		}
	}
	return 0;
}
 
/*
 * any write request will alloc coherent memory, eg.
 * echo 0 > /dev/cma_test
 */
static ssize_t
cma_test_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
	int i;
	int ret;
 
	for (i = 0; i < CMA_NUM; i++) {
		if (!dma_virt[i]) {
			dma_virt[i] = dma_alloc_coherent(cma_dev, (i + 1) * SZ_1M, &dma_phys[i], GFP_KERNEL);
 
			if (dma_virt[i]) {
				void *p;
				/* touch every page in the allocated memory */
				for (p = dma_virt[i]; p < dma_virt[i] + (i + 1) * SZ_1M; p += PAGE_SIZE)
					*(u32 *)p = 0;
 
				_dev_info(cma_dev, "alloc virt: %p phys: %p\n", dma_virt[i], (void *)dma_phys[i]);
			} else {
				dev_err(cma_dev, "no mem in CMA area\n");
				ret = -ENOMEM;
			}
			break;
		}
	}
 
	return count;
}
 
static const struct file_operations cma_test_fops = {
	.owner = THIS_MODULE,
	.read = cma_test_read,
	.write = cma_test_write,
};
 
static struct miscdevice cma_test_misc = {
	.name = "cma_test",
	.fops = &cma_test_fops,
};
 
static int __init cma_test_init(void)
{
	int ret = 0;
 
	ret = misc_register(&cma_test_misc);
	if (unlikely(ret)) {
		pr_err("failed to register cma test misc device!\n");
		return ret;
	}
	cma_dev = cma_test_misc.this_device;
	cma_dev->coherent_dma_mask = ~0;
	_dev_info(cma_dev, "registered.\n");
 
	return ret;
}
module_init(cma_test_init);
 
static void __exit cma_test_exit(void)
{
	misc_deregister(&cma_test_misc);
}
module_exit(cma_test_exit);
 
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>");
MODULE_DESCRIPTION("kernel module to help the test of CMA");
MODULE_ALIAS("CMA test");

申请内存:

# echo 0 > /dev/cma_test

释放内存:

# cat /dev/cma_test

发表评论:

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言
    友情链接