使用TensorFlow v2.0的基本张量操作
from __future__ import print_function import tensorflow as tf # 定义张量常量 a = tf.constant(2) b = tf.constant(3) c = tf.constant(5) # 各种张量操作 # 注意:张量也支持python的操作(+,*,...) add = tf.add(a,b) sub = tf.subtract(a,b) mul = tf.multiply(a,b) div = tf.divide(a,b) # 访问张量的值 print("add=",add.numpy()) print("sub=",sub.numpy()) print("mul=",mul.numpy()) print("div=",div.numpy())
output:
add= 5 sub= -1 mul= 6 div= 0.6666666666666666 # 更多一些操作 mean = tf.reduce_mean([a,b,c]) sum =tf.reduce_sum([a,b,c]) # 访问张量的值 print("mean=",mean.numpy()) print("sum=",sum.numpy())
output:
mean= 3 sum= 10 # 矩阵乘法 matrix1 = tf.constant([[1,2],[3,4]]) matrix2 = tf.constant([[5,6],[7,8]]) product = tf.matmul(matrix1,matrix2) # 展示张量 product
output:
<tf.Tensor: id=74, shape=(2, 2), dtype=int32, numpy= array([[19, 22], [43, 50]])> # 将张量转换为Numpy product.numpy()
output:
array([[19., 22.], [43., 50.]], dtype=float32)