四时宝库

程序员的知识宝库

PyTorch实战应用开发教程:基于卷积神经网络的图像风格迁移

欢迎来到本次PyTorch实战应用开发教程!在这个教程中,我们将创建一个基于卷积神经网络(CNN)的图像风格迁移应用,允许用户将一张图像的风格应用到另一张图像上。

步骤1:准备环境

首先,确保你已经安装了PyTorch和相关的库。你可以使用以下命令安装所需的库:

pip install torch torchvision pillow


步骤2:下载预训练模型和样例图像

我们将使用预训练的VGG19模型来提取图像的特征,并使用样例图像进行风格迁移。你可以从PyTorch的官方模型库下载VGG19的预训练权重。

步骤3:导入库

导入所需的库和模块:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt


步骤4:定义图像加载函数

我们将定义一个函数来加载图像,并将其转换为PyTorch张量:

def load_image(image_path, imsize=512):
    image = Image.open(image_path)
    loader = transforms.Compose([
        transforms.Resize((imsize, imsize)),
        transforms.ToTensor()
    ])
    image = loader(image).unsqueeze(0)
    return image.to(device, torch.float)

步骤5:定义内容损失函数

内容损失函数用于度量生成图像与原始图像之间的内容差异:

class ContentLoss(nn.Module):
    def __init__(self, target):
        super(ContentLoss, self).__init__()
        self.target = target.detach()
    
    def forward(self, x):
        loss = nn.functional.mse_loss(x, self.target)
        return loss

步骤6:定义风格损失函数

风格损失函数用于度量生成图像与风格图像之间的风格差异:

class StyleLoss(nn.Module):
    def __init__(self, target_feature):
        super(StyleLoss, self).__init__()
        self.target = self.gram_matrix(target_feature).detach()
    
    def forward(self, x):
        G = self.gram_matrix(x)
        loss = nn.functional.mse_loss(G, self.target)
        return loss
    
    def gram_matrix(self, x):
        a, b, c, d = x.size()
        features = x.view(a * b, c * d)
        G = torch.mm(features, features.t())
        return G.div(a * b * c * d)

步骤7:加载预训练VGG19模型

我们将加载VGG19模型,并选择中间层用于计算内容和风格损失:

cnn = models.vgg19(pretrained=True).features.to(device).eval()
content_layers = ['conv_4']
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']

步骤8:创建模型和优化器

我们将创建一个模型,将内容损失和风格损失添加到模型中,并设置优化器:

def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img,
                               content_layers=content_layers,
                               style_layers=style_layers):
    cnn = copy.deepcopy(cnn)

    normalization = Normalization(normalization_mean, normalization_std).to(device)

    content_losses = []
    style_losses = []

    model = nn.Sequential(normalization)

    i = 0
    for layer in cnn.children():
        if isinstance(layer, nn.Conv2d):
            i += 1
            name = 'conv_{}'.format(i)
        elif isinstance(layer, nn.ReLU):
            name = 'relu_{}'.format(i)
            layer = nn.ReLU(inplace=False)
        elif isinstance(layer, nn.MaxPool2d):
            name = 'pool_{}'.format(i)
        elif isinstance(layer, nn.BatchNorm2d):
            name = 'bn_{}'.format(i)
        else:
            raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))

        model.add_module(name, layer)

        if name in content_layers:
            target = model(content_img).detach()
            content_loss = ContentLoss(target)
            model.add_module("content_loss_{}".format(i), content_loss)
            content_losses.append(content_loss)

        if name in style_layers:
            target_feature = model(style_img).detach()
            style_loss = StyleLoss(target_feature)
            model.add_module("style_loss_{}".format(i), style_loss)
            style_losses.append(style_loss)

    for i in range(len(model) - 1, -1, -1):
        if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
            break

    model = model[:(i + 1)]

    return model, style_losses, content_losses

input_img = content_img.clone()
optimizer = optim.LBFGS([input_img.requires_grad_()])

步骤9:定义训练循环

我们将定义一个训练循环来迭代更新生成图像:num_steps = 300

for step in range(num_steps):
    def closure():
        input_img.data.clamp_(0, 1)

        optimizer.zero_grad()
        model(input_img)
        style_score = 0
        content_score = 0

        for sl in style_losses:
            style_score += sl.loss
        for cl in content_losses:
            content_score += cl.loss

        style_score *= style_weight
        content_score *= content_weight

        loss = style_score + content_score
        loss.backward()

        return style_score + content_score

    optimizer.step(closure)

output_img = input_img.data.clamp_(0, 1)
)

步骤10:显示结果

最后,我们将显示生成的图像:

plt.figure()
imshow(output_img, title='Output Image')

# 保存结果
output_path = 'output.jpg'
output_img = output_img.squeeze(0)
unloader = transforms.ToPILImage()
output_img = unloader(output_img)
output_img.save(output_path)

plt.show()

结论

在本教程中,我们创建了一个基于卷积神经网络的图像风格迁移应用,通过计算内容和风格损失来生成具有目标风格的图像。

希望这个教程对于你理解PyTorch在图像处理中的应用有所帮助!你可以进一步优化该应用,添加用户界面以允许用户上传图像并进行风格迁移。

发表评论:

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言
    友情链接