欢迎来到本次PyTorch实战应用开发教程!在这个教程中,我们将创建一个基于卷积神经网络(CNN)的图像风格迁移应用,允许用户将一张图像的风格应用到另一张图像上。
步骤1:准备环境
首先,确保你已经安装了PyTorch和相关的库。你可以使用以下命令安装所需的库:
pip install torch torchvision pillow
步骤2:下载预训练模型和样例图像
我们将使用预训练的VGG19模型来提取图像的特征,并使用样例图像进行风格迁移。你可以从PyTorch的官方模型库下载VGG19的预训练权重。
步骤3:导入库
导入所需的库和模块:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt
步骤4:定义图像加载函数
我们将定义一个函数来加载图像,并将其转换为PyTorch张量:
def load_image(image_path, imsize=512):
image = Image.open(image_path)
loader = transforms.Compose([
transforms.Resize((imsize, imsize)),
transforms.ToTensor()
])
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
步骤5:定义内容损失函数
内容损失函数用于度量生成图像与原始图像之间的内容差异:
class ContentLoss(nn.Module):
def __init__(self, target):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, x):
loss = nn.functional.mse_loss(x, self.target)
return loss
步骤6:定义风格损失函数
风格损失函数用于度量生成图像与风格图像之间的风格差异:
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = self.gram_matrix(target_feature).detach()
def forward(self, x):
G = self.gram_matrix(x)
loss = nn.functional.mse_loss(G, self.target)
return loss
def gram_matrix(self, x):
a, b, c, d = x.size()
features = x.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
步骤7:加载预训练VGG19模型
我们将加载VGG19模型,并选择中间层用于计算内容和风格损失:
cnn = models.vgg19(pretrained=True).features.to(device).eval()
content_layers = ['conv_4']
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
步骤8:创建模型和优化器
我们将创建一个模型,将内容损失和风格损失添加到模型中,并设置优化器:
def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img,
content_layers=content_layers,
style_layers=style_layers):
cnn = copy.deepcopy(cnn)
normalization = Normalization(normalization_mean, normalization_std).to(device)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
input_img = content_img.clone()
optimizer = optim.LBFGS([input_img.requires_grad_()])
步骤9:定义训练循环
我们将定义一个训练循环来迭代更新生成图像:num_steps = 300
for step in range(num_steps):
def closure():
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
return style_score + content_score
optimizer.step(closure)
output_img = input_img.data.clamp_(0, 1)
)
步骤10:显示结果
最后,我们将显示生成的图像:
plt.figure()
imshow(output_img, title='Output Image')
# 保存结果
output_path = 'output.jpg'
output_img = output_img.squeeze(0)
unloader = transforms.ToPILImage()
output_img = unloader(output_img)
output_img.save(output_path)
plt.show()
结论
在本教程中,我们创建了一个基于卷积神经网络的图像风格迁移应用,通过计算内容和风格损失来生成具有目标风格的图像。
希望这个教程对于你理解PyTorch在图像处理中的应用有所帮助!你可以进一步优化该应用,添加用户界面以允许用户上传图像并进行风格迁移。