(1)预处理:我们能够获得的原始数据很少以理想形式出现,无法满足学习算法的最佳性能,因此数据的预处理是所有机器学习应用中最关键的步骤。为了获得模型的最佳性能,许多机器学习算法要求所选特征的测量结果单位相同,通常通过把特征数据变换到[0,1]的取值范围,或者均值为0、方差为1的标准正态分布来实现。由于某些选定的特征相互之间可能高度相关,因此在某种程度上呈现冗余的现象。在这种情况下,可以通过降维技术将特征压缩到低维子空间,减少存储空间,提高算法的运行速度。预处理中为了确定机器学习算法不仅在训练数据集上表现良好,而且对新数据也有很好的适应性,我们将数据集随机分成单独的训练数据集和测试数据集。用训练数据集来训练和优化机器学习模型,同时把测试数据集保留到最后以评估最终的模型。(2)训练和选择预测模型:为了完成各种不同的任务,目前开发了许多不同的机器学习算法,但没有哪个分类算法是完美的。例如,每个分类算法都存在着固有的偏置,如果不对分类任务做任何假设,没有哪个分类模型会占上风。因此,在实际应用中我们至少要比较几种不同的算法,以便训练和选择性能最好的模型。在比较不同的模型之前,我们首先要确定度量性能的指标,通常用分类准确率作为度量指标,其定义为正确分类的个体占所有个体的百分比。我们不能期望软件库所提供的不同机器学习算法的默认参数值对特定问题最优,因此使用超参数调优技术来调优模型的性能就特别重要,我们可以这样理解超参数,这不是从数据中学习的参数,而是模型的调节旋钮,可以来回旋转调整模型的性能。(3)评估模型并对未曾谋面的数据进行预测:在训练数据集上拟合并选择模型之后,我们可以用测试数据集来评估它在从来没见过的新数据上的表现,以评估泛化误差。如果我们对模型的表现满意,那么就可以用它来预测未来的新数据。4、机器学习函数化(1)机器学习就是找一个好用的函数《未来简史》的作者赫拉利这样定义,人工智能实际上就是找到一种高效的“电子算法”,用以代替或在某项指标上超越人类的“生物算法”。那么,任何一个“电子算法”都要实现一定的功能(Function)才有意义,这种“功能”就是我们使用的“函数”。台湾大学李宏毅博士的说法更通俗一些,机器学习在形式上可近似等同于在数据对象中通过统计或推理的方法,寻找一个有关特定输入和预期输出的功能函数f。通常我们把输入变量空间记作X,也就是特征,变量既可以是标量(scalar),也可以是向量(vector),包括各种数据表或矩阵的列;而把输出变量空间记作Y,也就是目标。所谓的机器学习就是完成如下变换:Y=f (X)。在这样的函数中,针对语音识别功能,如果输入一个音频信号,就能输出诸如“你好”或“How are you?”等这类识别信息;针对图片识别功能,如果输入的是一张图片,在这个函数的加工下,就能输出一个或猫或狗的判定;针对下棋博弈功能,如果输入的是一个围棋的棋谱局势,它能输出这盘围棋下一步的“最佳”走法;而对于具备智能交互功能的系统(比如微软小冰),当我们给这个函数输入诸如“How are you?”,它就能输出诸如“I am fine,thank you,and you?”等智能的回应。总结这一下,机器学习的过程和目标就是在寻找一个“好用的”函数。(2)如何才能寻找到一个好用的函数“好用的”函数并不那么好找,输入一只猫的图像后,这个f函数并不一定就能输出一只猫,可能它会错误地输出为一条狗或一条蛇,开发者想要找到好的函数必须要走好三大步