四时宝库

程序员的知识宝库

一文搞懂tensorflow2.0(2)(一文搞懂CPU的工作原理)

全连接层

net=tf.keras.layers.Dense(units,activation)

net.build( input_shape=() ) 完成网络参数的创建

net.kernel 获取权值矩阵

net.bias 获取偏置向量

net.trainable_variables 获取待优化参数列表

net.variables 获取所有参数列表

model=tf.keras.Sequential([ ])

model.summary() 获取网络信息

激活函数

tf.nn.sigmoid Sigmoid函数

tf.nn.ranh tanh函数

tf.nn.relu ReLU函数 对应网络层类 tf.keras.layers.ReLU()

tf.nn.leaky_relu LeakyReLU函数 类 tf.keras.layers.LeakyReLU()

tf.nn.softmax softmax函数 类 tf.keras.layers.Softmax()

误差计算

均方差误差函数MSE

tf.reduce_mean( tf.keras.losses.MSE(y , out) )

层方法实现

tf.keras.losses.MeanSquaredError()

交叉熵误差函数

tf.keras.losses.categorical_crossentropy()

反向传播算法

自动求梯度

x=tf.random.normal([1,3])
w=tf.ones([3,2])
b=tf.ones([2])
y = tf.constant([0, 1])

with tf.GradientTape() as tape: # 构建梯度记录器

    tape.watch([w, b]) # 非tf.Variable类型张量需人为设置记录梯度信息
    logits = tf.sigmoid(x@w+b)
    loss = tf.reduce_mean(tf.losses.MSE(y, logits))

grads = tape.gradient(loss, [w, b])
print('w grad:', grads[0])
print('b grad:', grads[1])

Keras高层接口

自定义网络

net=tf.keras.Sequential( [Layer] )

net.add(Layer) 追加新的网络层

net.build(input_shape=)

net.summary() 网络结构

net.trainable_variables 待优化张量列表

net.variables 全部张量列表

模型装配、训练与测试

tf.keras.Model类 网络的母类

tf.keras.layers.Layer类 网络层的母类

net.compile( optimizer=,loss=,metrics=['accuracy'] ) 装配模型

history=net.fit(Dataset , epochs=, validation_data=,......) 模型训练

history.history 训练记录

net.evaluate 模型测试

net.predict 模型预测

模型保存与加载
net.save_weights('weights.ckpt') 保存模型所有张量数据

net.load_weights('weights.ckpt') 读取数据并写入当前网络

net.save('model.h5') 保存模型结构与参数

net=tf.keras.model.load_model('model.h5') 读取网络

tf.saved_model.save(net, 'model_savedmodel') 保存模型结构与参数

net=tf.saved_model.load('model_savedmodel') 读取网络

测量工具

tf.keras.metrics 如:统计平均值Mean类,准确率Accuracy类

loss_metre=metrics.Mean() 新建测量器

loss_meter.updata_state(float()) 写入数据

loss_meter.result() 读取统计信息

loss_meter.reset_states() 清除状态

Fashion MNIST Dense 实战

import tensorflow as tf
from  tensorflow import keras
from  tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

def preprocess(x, y):

    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    return x,y


(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()

batchsz = 128

db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(10000).batch(batchsz)

db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
db_test = db_test.map(preprocess).batch(batchsz)

model = Sequential([
    layers.Dense(256, activation=tf.nn.relu), # [b, 784] => [b, 256]
    layers.Dense(128, activation=tf.nn.relu), # [b, 256] => [b, 128]
    layers.Dense(64, activation=tf.nn.relu), # [b, 128] => [b, 64]
    layers.Dense(32, activation=tf.nn.relu), # [b, 64] => [b, 32]
    layers.Dense(10) # [b, 32] => [b, 10], 330 = 32*10 + 10
])
model.build(input_shape=[None, 28*28])
model.summary()
# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3)

def main():
    loss_ce_list=[]
    loss_mse_list=[]
    acc_list=[]
    for epoch in range(30):
        for step, (x,y) in enumerate(db):

            # x: [b, 28, 28] => [b, 784]
            # y: [b]
            x = tf.reshape(x, [-1, 28*28])

            with tf.GradientTape() as tape:
                # [b, 784] => [b, 10]
                logits = model(x)
                y_onehot = tf.one_hot(y, depth=10)
                # [b]
                loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
                loss_ce = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss_ce = tf.reduce_mean(loss_ce)

            grads = tape.gradient(loss_ce, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))


            if step % 100 == 0:
                print(epoch, step, 'loss:', float(loss_ce), float(loss_mse))
                loss_ce_list.append(float(loss_ce))
                loss_mse_list.append(float(loss_mse))


        # test
        total_correct = 0
        total_num = 0
        for x,y in db_test:

            # x: [b, 28, 28] => [b, 784]
            # y: [b]
            x = tf.reshape(x, [-1, 28*28])
            # [b, 10]
            logits = model(x)
            # logits => prob, [b, 10]
            prob = tf.nn.softmax(logits, axis=1)
            # [b, 10] => [b], int64
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            # pred:[b]
            # y: [b]
            # correct: [b], True: equal, False: not equal
            correct = tf.equal(pred, y)
            correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))

            total_correct += int(correct)
            total_num += x.shape[0]

        acc = total_correct / total_num
        print(epoch, 'test acc:', acc)
        acc_list.append(acc)
    return loss_ce_list,loss_mse_list,acc_list

ce,mse,acc=main()

import matplotlib.pyplot as plt

%matplotlib inline
epochs1=range(1, len(ce)+1)
epochs2=range(1,len(mse)+1)
plt.plot(epochs1, ce, 'b', label='ce',color='coral')
plt.plot(epochs2, mse, 'b', label='mse')
plt.ylim(0,1)
plt.title('loss')
plt.legend()

plt.figure()
epochs3=range(1, len(acc)+1)
plt.plot(epochs3, acc, 'b', label='acc',color='coral')
plt.ylim(0,1)
plt.title('acc')
plt.legend()

plt.show()

自定义网络实战

import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import datasets, layers, optimizers

# 预处理
def preprocess(x, y):
    x = tf.cast(x, dtype=tf.float32) / 255. #标准化
    x = tf.reshape(x, [-1, 28*28]) #打平
    y = tf.cast(y, dtype=tf.int32) #转出整型张量
    y = tf.one_hot(y, depth=10) #one_hot编码
    return x,y


(x, y), (x_test, y_test) = datasets.mnist.load_data() #加载数据
print('x:', x.shape, 'y:', y.shape, 'x test:', x_test.shape, 'y test:', y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y)) #构建Dataset对象
train_db = train_db.shuffle(60000).batch(128).map(preprocess) #随机打散和进行批量处理

test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.shuffle(10000).batch(128).map(preprocess)
x,y = next(iter(train_db))
print('train sample:', x.shape, y.shape)


class MyDense(layers.Layer):
    def __init__(self, in_dim, out_dim):
        super(MyDense, self).__init__()
        self.kernel = self.add_variable('w', [in_dim, out_dim])

    def call(self, inputs, training=None):
        x = inputs @ self.kernel
        x = tf.nn.relu(x)
        return x


class MyModel(tf.keras.Model):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = MyDense(28 * 28, 256)
        self.fc2 = MyDense(256, 128)
        self.fc3 = MyDense(128, 64)
        self.fc4 = MyDense(64, 32)
        self.fc5 = MyDense(32, 10)

    def call(self, inputs, training=None):
        x = self.fc1(inputs)
        x = self.fc2(x)
        x = self.fc3(x)
        x = self.fc4(x)
        x = self.fc5(x)

        return x

model = MyModel()
model.compile(
    optimizer=optimizers.Adam(),
    loss=tf.losses.CategoricalCrossentropy(from_logits=True),
    metrics=['accuracy']
)
model.fit(train_db, epochs=10, validation_data=test_db)

扫一扫 获得更多内容

发表评论:

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言
    友情链接